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Motivation

Research Question:
▶ What is the finite sample performance of machine learning based meta-learners

using cross-fitting for estimation of heterogeneous causal effects?



Motivation

Meta-Learners:
▶ flexibility in estimation of heterogeneous causal effects
▶ generality in the choice of the learning method (Künzel et al. 2019)
▶ lack of unifying simulation evidence for assessment of meta-learners

Cross-Fitting:
▶ overfitting bias due to estimation of nuisance functions (Chernozhukov et al. 2018)
▶ sample-splitting and cross-fitting to reduce bias and regain efficiency
▶ lack of simulation evidence for assessment of estimation procedures



Methods

Data Inputs:
▶ treatment indicator Wi ∈ {0, 1}
▶ outcome variable Yi
▶ covariates Xi

Nuisance Functions:
▶ propensity score function e(x) = P[Wi = 1 | Xi = x ]
▶ response function µ(x) = E[Yi | Xi = x ]

Meta-Learning:
▶ treatment effect function τ(x) = ζ

(
Wi , Xi , Yi , e(x), µ(x)

)



Methods

Figure 1: Illustration of the full-sample, sample-splitting and cross-fitting procedure.
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Figure 2: CATE distributions under full-sample, sample-splitting and cross-fitting estimation.



Methods

Framework:
▶ identification based on the selection-on-observables strategy
▶ implementations based on the full-sample, sample-splitting and cross-fitting
▶ meta-learners based on the random forest algorithm

Simulation Study:
▶ synthetic and empirical simulations
▶ DGPs with unequal treatment shares, non-linearities and large-dimensions
▶ varying sample sizes up to 32’000 observations



Results
Figure 3: Results for Main Simulation: unbalanced treatment and nonlinear CATE
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Results

Estimation Procedures:
▶ sample-splitting effectively reduces the bias in large samples
▶ cross-fitting additionally regains the full sample size efficiency
▶ full-sample estimation preferable in small samples when using machine learning

Meta-Learners:
▶ varying impacts of the estimation procedures on the performance of meta-learners
▶ X-learner suitable for imbalanced treatment shares in any version and sample size
▶ DR-learner suitable for balanced treatment shares using cross-fitting in large samples



Results

Takeaway:
▶ The performance of meta-learners varies greatly but the choice of the meta-learner

and the estimation procedure can be guided by observable data characteristics.
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